Proceedings of the International Conference “Embedded Electronics and Computing Systems(EECS)” 29-30 July, 2011 by S K R engineering COLLEGE,CHENNAI-600123

RUNTIME RECONFIGURABLE ADAPTIVE

VITERBI ARCHITECTURE

 R.SAMBA SIVA NAYAK Dr.M.S.SAIRAM PSS SUMA PRIYA

 ASSOC. PROFESSOR & HOD ASSOC. PROFESSOR ASST. PROFESSOR

 DEPT. OF ECE, DBIT DEPT. OF ECE, CITS
 DEPT. OF ECE, DBIT

ABSTRACT:

 In this paper present a runtime reconfigurable architecture with a high throughput rate suitable. Run-time reconfiguration is performed in response to varying communication channel noise conditions to match minimized power consumption to required error-correction capabilities. Although hardware implementation of decoding algorithms, such as the Viterbi algorithms, have shown good tolerance for error-correcting codes, these implementation require an exponential in VLSI area. We have examined and implemented decoder based on Adaptive viterbi algorithm. The architecture can be reconfigured to decode convolutionally coded data with constraint length 3 and code rate ½.These architecture does not require FPGA reprogramming with no loss of decode accuracy
Keywords- Convolution, Re-Configurability, Adaptive Viterbi Decoder, Error-Correcting Code
INTRODUCTION
 Forward Error Correction is essential component of wireless communication system. Typically convolutional are employed to implement FEC but the complexity of corresponding decoders increases exponentially according to constraint length. Present wireless standards such as the third generation systems, GSM, 802.11a and 802.16 utilize some configuration of convolutional coding. The viterbi algorithm is the most widely used technique for detecting and correcting errors in communication systems based in convolutional coding and is adequate for data reception. In this paper we will use reconfigurable hardware to implement the Viterbi decoder that is used in wireless communication receivers. This means that one should consider optimized implementation of both baseband Processing and error correction algorithms for multi-mode communication systems in heterogeneous reconfigurable hardware. We already reported the implementation of baseband processing for different wireless communication systems in the same reconfigurable hardware, Due to the reduced complexity of the algorithm, logic resource requirements are reduced by more than a factor of two compared to standard Viterbi decoder implementations, even for larger constraint lengths and decoder performance in terms of processed bandwidth is improved. An empirical study shows that hardware requirements for our decoder grow predictably with constraint length at a rate substantially less than the exponential growth exhibited by standard Viterbi algorithms. The model is verified through experimental results

BACKGROUND
 Encoding is accomplished through the addition of redundant bits to transmitted information symbols. These redundant bits provide decoders with the capability to correct transmission errors. Convolutional codes form a set of popular error-correction codes. In convolutional coding, the encoded output of a transmitter (encoder) depends not only on the set of encoder inputs received during a particular time step, but also on the set of inputs received within a previous span of K-1 time units, where K is greater than 1. The adaptive Viterbi algorithm was introduced with the goal of reducing the average computation and path storage required by the Viterbi algorithm. Instead of computing and retaining all 2K−1 possible paths, only those paths which satisfy certain path cost conditions are retained at each stage, where a path’s “cost” is defined as the Euclidean distance between the path and the received sequence. Path retention is based on the following criteria.

[image: image7.emf]
Figure 1: Block diagram viterbi decoding

1) A threshold T indicates that a path is retained if its path cost is less than dm + T, where dm is the minimum cost among all surviving paths in the previous trellis stage.

2) The total number of survivor paths per trellis stage is limited to a fixed number, Nmax, which is pre-set prior to the start of communication.

The first criterion allows high-cost paths that likely do not represent the transmitted data to be eliminated from consideration early in the decoding process. In the case of many paths with similar cost, the second criterion restricts the number of paths to Nmax, which is important architecturally. At each stage, the minimum cost of the previous stage dm, threshold T, and maximum survivors Nmax are used to prune the number of surviving paths. Careful calculation of T and Nmax is the key to effective use of the AVA algorithm. If threshold T is set to a small value, the average number of paths retained at each trellis stage will be reduced. This can result in an increased BER since the decision on the most likely path has to be taken from a reduced number of possible paths. Alternately, if a large value of T is selected, the average number of survivor paths increases and results in a reduced BER. As a result, increased decode accuracy comes at the expense of additional computation and a larger path storage memory. The maximum per-trellis stage number of survivor paths, Nmax, has a similar effect on BER as T. As a result, an optimal value for T and Nmax should be chosen so that BER is within allowable limits while matching the resource capabilities of the hardware. In previous work [8], we have experimentally determined appropriate values for T and Nmax for a range of K values.

AVA DECODING
 To explore the power benefits of AVA use we have developed a hardware implementation of the algorithm. This architecture exhibits significant parallelism and supports dynamic reconfiguration to adapt decoder hardware to changing channel noise characteristics. Hardware reconfiguration provides the key mechanism to achieve decoder power savings.

[image: image1.emf][image: image2.emf]
Figure 2: typical trellis

A high-level view of the implemented adaptive Viterbi decoder architecture is shown in Figure 1. The decoder contains a data path and an associated control path. Like most Viterbi decoders [11], the data path is split into four parts: the branch metric generators (BMG), add-compare-select (ACS) units, the survivor memory unit, and path metric storage and control. A BMG unit determines distances between received and expected symbols. The ACS unit determines path costs and identifies lowest-cost paths. The survivor memory stores lowest cost bit-sequence paths based on decisions made by the ACS units and the path metric array holds per-state path metrics. The flow of data in the data path and the storage of results is determined by the control path.

[image: image3.emf]
Figure 3: Architecture of modified ACS

The viterbi decoding algorithm is composed by the next stages:a) Computing of metrics b) Add-Compare select operation c) Trace back operation. In the proposed design, the branch metrics are computed using the hamming distance. The Hamming distance between binary data word c1 and c2, in the case denoted by BM (c1,c2) is the minimum number of bits that must be “flipped” to go from one word to another. Fig.2 shows a typical trellis, if the Hamming distance is used to calculate the branch metric between two states then for example: BM (n0,n0)=BM(n1,n2)

BM (n1,n0)=BM(n0,n2)

Therefore it is only necessary calculate two BM per butterfly. The next operation in Viterbi decoding is the add-compare select branches which make in two states metrics and two branch metrics and output the survivor path and an updated path metric at each node in the trellis and stores the updated path metrics into the path metrics register as input for the next stage of ACS. The survivor management unit (SMU) trace back through the trellis using the survivor paths to produce the output bits. Since the decoder generates the decoded bits in inverse order, bit swapping is necessary by simply passing all the decoded bits through a LIFO memory. The essence of the viterbi algorithm resides in the operations ACS and trace back which need to be applied generally to a large number of nodes. This number of nodes is depending of constraint length (K).

ARCHITECTURE
 Fig. 1(a) shows the recursive data flow diagram of an adaptive Viterbi algorithm, which adds two functional blocks, including the best winner search and non survivor purge [2], into the original Viterbi algorithm. At the decoding depth, after all the ACS units determine their own local winners, the best winner search block finds the one having the best (minimum) path metric among all the winners, denoted as, and the non survivor purge block deletes the local winners whose metric and feeds the others as survivors to the next decoding depth, where is a fixed positive number. In this work, we developed a method to eliminate the search-for-the-best-winner operation and hence enable the high-throughput state-parallel adaptive Viterbi decoder implementation.

[image: image4.emf]
Figure 4: Threshold selection architecture ACS: Convectional

This directly eliminates the search-for-the-best-winner operation in the recursive decoding data path, and the resulted algorithm is referred to as the relaxed adaptive Viterbi algorithm. The branch metric dynamic normalization is realized by the three shaded functional blocks as shown in Fig. 1(b), which are described as follows.
The branch metric dynamic normalization is realized by the three shaded functional blocks as shown in Fig. 1(b), which are described as follows.

[image: image5.emf]
Fig 5: Threshold selection architecture ACS: Reformulated

The branch metric dynamic normalization is realized by the three shaded functional blocks as shown in Fig. 1(b), which are described as follows.

• Threshold Check: It checks whether at least one survivor has a metric less than, where is a positive number that is much less than. If yes, it outputs a zero, otherwise, it outputs.

• Best Branch Metric Search: At the decoding depth, it simply finds the best (minimum) branch metric, denoted as, among the all the present branch metrics.

• Branch Metric Normalization: At each depth, given the input, which is either zero or from the Threshold Check and the input from the Best Branch Metric Search, it subtracts from all the branch metrics And feeds these normalized branch metrics to the succeeding ACS operations. If at least one survivor has a metric less than (i.e., the metric of the best survivor is very close to since is much (less than), the normalized branch metrics will be nonnegative with the minimum value of zero, and the path metrics will monotonically increase. If none of the survivors has a metric less than (i.e., the metric of the best survivor is not very close to), we bias the branch metric normalization by to push the path metrics toward. With appropriate selection of two distinctive features of our decoder are the parallel computation of all ACS units and the per-symbol dynamic adjustment of T. In the implemented decoder, the expected symbol value (BM select) is used to select the appropriate branch metric from the BMG, as shown in Figure 2. This branch metric value is combined with the path metric of its parent present state to form a new path metric, di. At each trellis stage, the minimum-value surviving path metric among all path metrics for the preceding trellis stage, dm, is computed. New path metrics are compared to the sum dm + T to identify path metrics with excessive cost. Comparators are then used to determine the life of each path based on the threshold, T. If the threshold condition is not satisfied by path metric dm + T, the corresponding path is discarded. Once the paths that meet the threshold condition are determined, the lowest-cost Nmax paths are selected. Sorting circuitry is eliminated by allowing feedback adjustments to the parameter T for each received symbol. If the number of paths that survive the threshold is less than Nmax, no iteration is required. As show in Figure 2, for stages when the number of paths surviving the threshold condition is greater than Nmax, T is iteratively reduced by 2 for the current trellis stage until the number of paths surviving the threshold condition is equal to or less than Nmax. The T value is reset to its original value prior to the processing of the next trellis stage. Appropriate values for T and Nmax were determined in previous work [8], so that T reduction is needed infrequently (for less than 5% of symbols). The output of the ACS units includes path valid signals which indicate which of the 2 * Nmax paths have survived pruning.
[image: image6.png]b1

b2

sum2

Figure 6: Logical ACS architecture

Most communication systems desire links with predictable performance, which is usually specified by a fixed BER. Although desired decoder accuracy remains constant, channel signal-to-noise ratios can vary widely due to factors such as the propagation distance and the shadowing of the transmitted signal by large objects. In the presence of increased noise power (equivalently, a decreased SNR due to a weaker signal), a higher constraint length code is required to maintain a constant BER. As will be shown in Section V, AVA decoders for higher constraint-length codes require a larger amount of logic resources and consume more power than decoders for codes with smaller constraint lengths. If the encoder and decoder hardware can be reconfigured to exactly match the constraint length required at a specific time instant, power consumption can be minimized. In the presence of increased noise, a high-constraint length encoder and decoder (larger K) can be swapped in at the cost of increased power consumption. If the noise power is reduced, a low-constraint length encoder and associated lower-power AVA decoder can be used in its place. If swapping is not allowed, a high-constraint length decoder must always be used. Since channel noise statistics do not generally change instantaneously, reconfiguration based on channel noise statistics can be performed at a coarse timescale, once every few seconds.

CONCLUSION
 In this paper a flexible runtime reconfigurable architecture for Adaptive Viterbi decoder suitable for use in receiver architectures. The architecture is based in a fully parallel scheme and thus suitable for very high data rate decoding.The proposed architecture is easily scalable to other constraint length without diminishing speed. The main contribution of this work is the novel and compact implementation of the basic cell to platform the add-compare-select operation. This is possible thanks to the special branch metric calculation. Future work involving exploring techniques to reduce the power consumption, an important factor in mobile platforms. Power saving technique ensures that the architecture is feasible for mobile devices.

REFERENCES
[1] W. Burleson, R. Tessier, D. Goeckel, S. Swaminathan, P. Jain, J. Euh, S. Venkatraman, and V. Thyagarajan. Dynamically Parameterized Algorithms and Architectures to Exploit Signal Variations for Improved Performance and Reduced Power. In IEEE Conference on Acoustics, Speech, and Signal Processing, May 2001.

[2] F. Chan and D. Haccoun. Adaptive Viterbi Decoding of Convolutional Codes over Memoryless Channels. IEEE Transactions on Communications,45(11):1389–1400, Nov. 1997.

[3] M. Kivioja, J. Isoaho, and L. Vanska. Design and Implementation of a Viterbi Decoder with FPGAs. Journal of VLSI Signal Processing, 21(1):5–14, May 1999.

[4] C. F. Lin and J. B. Anderson. M-algorithm Decoding of Channel Convolutional Codes. In Proceedings, Princeton Conference of Information Science and Systems, pages 362–366, Princeton, N

[5] A.J.Viterbi, “Convolutional codes and their performance in communication systems,” IEEE Transaction on Communications, vol. COM-19, pp. 751 to 771, October 1971.
[6] Jan.M.Rabaey, “Wireless beyond the facing the energy challenge,” in ISLPED Proceedings of the International Symposium on Low Power Electronics and Design, August 2001, p. 1 to 3.

[7] Pravin Bhagwat, Charschik Bisdikian, Ibrahim Korpeoglu, Arvind Krishna, and Mahmoud Naghshineh, “System design issues for low-power, low-cost short range wireless networking,” in IEEE International Conference on Personal Wireless Communications (ICPWC’99), February 1999.J, Mar. 1986.

