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Abstract: Scalar multiplication is the time consuming operation in elliptic curve based cryptosystem. In this paper, we extend the MOF method to improve the speed of the scalar multiplication. Instead of non-adjacent form of integers, width-mutual opposite form of the same is used for the computation. Elliptic curve cryptosystems (ECC) are suitable for memory-constraint devices like smart cards due to their small key-size. A standard way of computing elliptic curve scalar multiplication is window methods, which enhance the efficiency of the binary method at the expense of some pre computation. The most established window methods are sliding window on NAF (NAF+SW), wNAF, and wMOF. A common drawback of these schemes is that only a small portion of the numbers is possible sizes for precomputation tables. Therefore, in practice, it is often necessary to waste memory because there is no table fitting exactly the available storage. The results we obtained from the proposed method significantly improve the performance of the elliptic curve exponentiation. 
Index Terms—Public key cryptosystems, algorithm design and analysis, elliptic curve scalar multiplication, signed binary representations. 

1. INTRODUCTION

Elliptic curve based protocols such as Elliptic Curve Diffie- Hellman (ECDH), Elliptic Curve Digital Signature Algorithm (ECDSA) and Elliptic Curve Integrated Encryption Schemes (ECIES) involves scalar multiplication. The speed of scalar multiplication plays a vital role in deciding the efficiency of the whole system. In particular, fast multiplication is more crucial in some environments such as e-commerce servers and in handheld devices with low computational power. 
The RSA cryptosystems utilizes a mathematical property called the difficulty of integer factorization, and the degree of security is determined by a mathematical length (bit length) called key length. If this length is made as long as possible, the degree of security becomes higher. The data volume for long key lengths increases at the same time thereby making the time taken by encryption and decryption is longer. Such time-consuming processing is a deterrent to communication on networks.  we now turn our attention in the following pages to cryptosystem for use in compact, light-weight mobile devices like cell phones and contactless smart cards, namely, the Elliptic Curve Cryptosystem   compared to RSA cryptosystems. An Elliptic Curve Cryptosystem (Table 1) has the characteristic that it can make do with a shorter key length. And since it utilizes a mathematical property called the discrete logarithm problem on three-dimensional elliptic curve, decryption is more difficult than in the case of RSA cryptosystems which uses integer factorization. 
	Parameter
	RSA
	ECC


	Basis of security
	integer factorization

	Elliptic curve discrete logarithm problem

	Key length attaining equivalent security (number of bits)
	1024
2048
4096
	160
224
256

	Performance
	low speed
	high speed

	Memory capacity used
	large
	small


Table 1: RSA vs ECC
2.    EC SCALAR MULTIPLICATION
In this section, we review the most common methods for elliptic curve scalar multiplication with pre computation. In the following, we describe the different recoding techniques used. Sliding window method applied to NAF. For scalar multiplication in arbitrary groups, the sliding window technique is the method of choice. As the inversion of an elliptic curve point is computed virtually for free, it is meaningful to consider signed representations of the scalar d. As NAF provides the minimal Hamming weight among all signed binary representations [9], the idea came to apply the sliding window method to the NAF representation of d [1].
2.1 wNAF
A different approach is wNAF, which is defined as follows: 
Definition:  A sequence of signed digits is called wNAF if the following three properties hold:

1. The most significant nonzero digit is positive.

2. Among any w consecutive digits, at most one is nonzero.

3. Each nonzero digit is odd and less than   2w - 1 in absolute value.

           Instead of applying window techniques to signed binary representations, wNAF can be computed directly from binary strings using a generalization of NAF for the most elegant description). Note that the original NAF is the same as wNAF for w=2[2].
2.1 wMOF
In order to benefit from mixed coordinates, the evaluation stage of the scalar multiplication has to be done left-to-right. If a left-to-right recoding scheme were available, the recoding and evaluation stage could be merged. This saves the storage of the recoded scalar and is therefore preferable on memory-constraint devices. These considerations were the motivation for the development of wMOF [11], which allows the first complete left-to-right scalar multiplication for w > 2[9]. wMOF is obtained by applying a width w sliding window scheme to the signed binary representation MOF from left-to-right.
2.2 NAF
There are several algorithms for obtaining the NAF

representation of a value given in binary. One such is the 
following method using repeated division; it works by [11]
choosing non-zero coefficients such that the resulting [10]
quotient is divisible by 2 and hence the next coefficient is 
zero.

Input: E = (em − 1 em − 2 ··· e1 e0)2
Output: E = (zm zm − 1 ··· z1 z0)NAF
i ← 0

while E > 0 do 

if E is odd then 

zi ← 2 − (E mod 4)

else 

zi ← 0

E ← (E − zi)/2

i ← i + 1

return z

Properties: NAF assures a unique representation of an integer, but the main benefit of it is that the Hamming weight of the value will be minimal. For regular binary representations of values, half of all bits will be non-zero, on average, but with NAF this drops to only one-third of all digits. Obviously, at most half of the digits are non-zero, which was the reason it was introduced by G.W. Reitweisner in 1960 for speeding up early multiplication algorithms, much like Booth encoding. Because every non-zero value has to be adjacent to two 0's, the NAF representation can be implemented such that it only takes a maximum of m + 1 bits for a value that would normally be represented in binary with m bits. The properties of NAF make it useful in various algorithms, especially some in cryptography, e.g., for reducing the number of multiplications needed for performing an exponentiation. In the algorithm exponentiation by squaring the number of multiplications depends on the number of non-zero bits. If the exponent here is given in NAF form a digit value 1 implies a multiplication by the base and a digit value 1 by its reciprocal. One such method is called non-adjacent form (NAF)[8]. In the case of NAF, the binary representation only using "0" and "1", is converted to the signed binary representation using three digits, namely, "0", "1", and "-1". By using this method, it becomes possible to speed up encryption/decryption processing and repel code-breaking attacks by eavesdropping such as Side Channel Attack. Incidentally, Side Channel Attack (figure1) is one new type of attack method that has rapidly gained attention as of late [11]. 
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Figure 1: Existing attack and Side Channel Attack

It attacks the properties, that is to say, the vulnerability that goes with them, of the hardware installed in mobile devices. One of the many kinds of Side Channel Attack focuses on the slight variations in power consumption by eavesdropping on transmissions from a mobile device. For example, during a "0" bit operation, the power consumption drops; on the other hand, during a "1" bit operation, the power consumption rises. Therefore, merely by closely monitoring this change in the power state of the binary operations, it is possible to simply read  the form of the original data before it was encrypted[5].And now, returning this discussion to NAF described above, this method has become mainstream method to encrypt/decrypt in Elliptic Curve Cryptosystems. In the case of the converting to NAF, for example, in the case of calculation with the whole number "15" (in the decimal system) in the binary system, i.e., [1111], starting with the least significant bit, each bit must be shifted by a single digit from right to left. This conversion process involves duplication and, as a result, the calculation time becomes longer. To deal with this, we have devised a breakthrough method called "mutual opposite form" (MOF). Here, let's take a look at the diagram below [10][12]. 
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We prove the following theorem:

 Theorem 1: Let w be a valid fractional window size, i.e., w =w0 + w1, where w0 = [w] and w1= r/2w0-2 for an r between 0 and 2w0_2 _ 1. The Frac-wNAF scheme applied to a scalar d requires w1>þ and  w1>2w0_2 precomputed elements and achieves a representation with an asymptotic nonzero density of 
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When the bit length of d tends to infinity.
Proof: From the considerations above, it is obvious that the number of precomputed points equals (1+w1)2w0-2  To study the nonzero density of the achieved form, we model Procedure Frac-wNAF as a random process which, on input of an infinitely long sequence of uniformly and independently distributed bits d0, d1 . . . outputs a series of blocks of the following shapes:
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         (w0 zero digits and a nonzero one), or
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(w0 - 1) zero digits and a nonzero one). 

It shows schematically how in the case of the NAF method, conversion starts from the least significant bit, that is, from right to left, and how in the case of the MOF method, conversion starts from the most significant bit, that is, from left to right[9]….[12].
3. SPECIFIC CALCULATION PROCESS BY USING MOF
Let's take a look at a specific calculation process using MOF. Like the above-described NAF representation, MOF representation is another kind of signed binary representation. In this binary representation, "0" bits are left but the signs of every consecutive "1" bits are mutually reversed. In conversion from binary representation to MOF representation, the binary representation is doubled up; each bit in the second representation is pulled one place to the right. Then in conversion from MOF representation to converted MOF representation, each pair of bits is converted in order from the left (i.e., 11→01, 11→01,...)[5]. In the case of converted MOF representation “1" expresses "-1", and the number of non-zero bits is minimized [8]. In other words, in the case of Elliptic Curve Cryptosystems, since non-zero bits force to execute elementary elliptic calculation, by applying converted MOF representation, it is possible to reduce the number of such calculations and, thus, speed up the cryptographic process[7]..[12]. 
3.1 Fractional wMOF
In this section, we apply the highly flexible fractional window method to MOF.

Theorem 2:
     Let w be a valid fractional window size, i.e w= w0 + w1, where w0 = [w] and w1 = r/2 w0- 2 for an r between 0 and 2w0- 2-1. The fractional wMOF scheme applied to a scalar d requires
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Precomputed elements and achieves a representation with a nonzero density of 
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when the bit length of d tends to infinity.

Proof: From the considerations above, it is obvious that the number of precomputed points equals to
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Although Theorem 1 and Theorem 2 are only of asymptotic nature, that for all values of cryptographic relevance, the provided asymptotic terms reflect the measured real-life values quite accurately.
	Scheme
	Table Size
	1/NonZero Density
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Table 2: Comparison of Table Size and Nonzero Density
4. MY CONTRIBUTIONS
 
In this paper use Markov chains to analyze the Frac- wNAF, confirming Moller’s statements about the efficiency of this scheme. The fractional window method uses three different windows, namely, a zero digit (0), a window of w0 consecutive zero digits followed by a nonzero one, or a window of (w0-1) consecutive zeros followed by a nonzero one[4]. These three states are sufficient to construct the transition matrix of the Frac-wNAF method and we can establish the average density of nonzero digits using Markov theory [5].    Next, we propose the fractional wMOF (Frac-wMOF) method, which is a left-to-right analogue of Frac-wNAF. 
         The proposed Frac-wMOF is a highly flexible variant of wMOF as it can be set up with arbitrary table sizes. Surprisingly, the average nonzero density of Frac-wMOF for a given memory size is exactly equal to that of Frac-wNAF. Therefore we can adapt the proof technique described above to FracwMOF with slight changes (table3). The three states of the Markov process are different, but their mutual dependencies are the same. From this result, we can achieve an efficient left-to-right exponent recoding algorithm with flexible memory usage. As an application to elliptic curve cryptosystems, we present an on-the-fly scalar multiplication algorithm based on Frac-wMOF recoding [6]. The proposed scheme requires virtually no additional working memory and, thus, it is suitable for implementation on memory-constraint devices. Finally, based on these results, we are able to give a detailed comparison of NAF+SW, wNAF, and wMOF with the fractional methods. From the construction of the latter, it is obvious that wNAF and wMOF can be modeled with the fractional methods. But, surprisingly, we point out that the same is true for NAF+SW, which is generated in a completely different manner. We show that the properties of NAF+SW can be achieved as a special instance of the fractional methods [5].
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Therefore, we conclude that FracwMOF is the best window method among these schemes. Recently, independently from our work, Moller also analyzed a generalization of his fractional method to the left-to-right case. He achieved the same representation as Frac-wMOF and was able to prove that this representation provides minimal Hamming weight among all signed-digit representations using a certain digit set [12]. This work goes perfectly with our results and confirms our conjecture that Frac-wMOF is the best universally applicable method for performing base-2 elliptic curve scalar multiplication in limited-constrained devices.
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	decimal   2393 = 
	[binary representation]
	101101101111
	(a)

	
	[double]
	1011011011110
	(b) =  (a)×2

	
	[MOF representation]
	1110110110001
	(c) = (b)-(a)
bitwise subtraction

	
	[converted MOF representation]
	0110010010001
	 (d) 11→01, 11→01


Table 3: Generating MOF
5.  CONCLUSION
In this paper, we proposed the fractional wMOF (FracwMOF) method for computing scalar multiplications in elliptic curve cryptosystems (ECC). Frac-wMOF is a left-to right analogue to the fractional wNAF (Frac-wNAF) method. This duality is also highlighted by the observation that both recoding schemes can be modeled as a Markov chain with the same transition matrix.    Therefore, we used Markov theory to analyze the asymptotic behavior of both fractional schemes. We indeed proved that the proposed Frac-wMOF has the same nonzero density as Frac-wNAF using identical table sizes [6]. In addition, our analysis enabled the comparison of the fractional schemes with previously known efficient window methods for EC scalar multiplication. To prove the main properties of all these methods can be achieved as a special instance of fractional wMOF, respectively, wNAF.       With Frac-wMOF recoding, the whole scalar multiplication can be processed left-to-right, hence requiring less working memory than the Frac-wNAF approach. 

Since recent results additionally show that Frac-wMOF recoding provides the minimal Hamming weight among all schemes using the same table, we believe that Frac-wMOF is indeed the optimal universally applicable base 2-representation for performing EC scalar multiplications in limited constraint devices. RSA cryptosystems suffered from two drawbacks. First, to increase the robustness of security by RSA cryptosystems, the key length has to be increased; second, it is relatively easy to solve the underlying problem, namely integer factorization. Regarding the appearance of Elliptic Curve Cryptosystems, up until that time, "non-adjacent form" (NAF) was utilized as a conversion method[9]. However, NAF suffers the feature that the basic calculation steps are invariably duplicated. Accordingly, a method to speed up cryptographic processing and cut down memory utilization--called "mutual opposite form" (MOF)--was devised.
6. EXPERIMENTAL RESULT
Result1: Selecting input file from source and store output in destination
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 Result 2: Select various algorithm to perform encryption & Decryption
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Result 3: Comparison Report 

[image: image29.png]Fle Edt Format View Hel

Process: Encryption
Number of Bytes: 256
Time Taken : 1500 ms

Process: Encryption
Number of Bytes: 256

End Time : 04:49:14
Time Taken : 3250 ms

Process: Encryption
Number of Bytes: 256
Time Taken : 2250 ms

Process: Encryption
Number of Bytes: 256

End Time : 04:53:08
Time Taken : 1500 ms

Process: Encryption
Number of Bytes: 256

Time Taken : 3250 ms

Process: Encryption

Number of Bytes: 256
Start Time : 04:53:25
End  Time : 04:53:27:

Start Time : 04:49:01:
End Time : 04:49:02:

Start Time : 04:49:11:
:406

Start Time : 04:49:26:
End  Time : 04:49:29:

Start Time : 04:53:06:
1453

Start Time : 04:53:15:
End  Time : 04:53:19:

Procedure :

109
609

Procedure :

156

Procedure :

968
218

Procedure :

953

Procedure :

953
203

Procedure :

1421

671

NAF

WNAF

MOF

NAF

WNAF

MOF

»





Result 4: Comparison Result
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